DocumentCode :
2484773
Title :
Classifiability criteria for refining of random walks segmentation
Author :
Rysavy, Steven ; Flores, Arturo ; Enciso, Reyes ; Okada, Kazunori
Author_Institution :
Comput. Sci. Dept., San Francisco State Univ., San Francisco, CA
fYear :
2008
fDate :
8-11 Dec. 2008
Firstpage :
1
Lastpage :
4
Abstract :
This paper proposes a novel approach to improve the segmentation quality of a 3D random walks algorithm using classifiability criteria. We produce a range of potential threshold values by extending the decision function of a random walks algorithm using a likelihood ratio test. Optimal threshold values are quantitatively isolated using two data-driven methods: maximum total accuracy and Bayesian cross validation criteria. The proposed methods are evaluated using a dataset of 28 dental lesions in 3D cone-beam CT scans. Both methods produce viable thresholds, the first corresponding to a conservative segmentation and the second a relaxed segmentation. We qualitatively compare the results to determine the best method.
Keywords :
image classification; image segmentation; 3D cone-beam CT scans; Bayesian cross validation criteria; classifiability criteria; data-driven methods; likelihood ratio test; maximum total accuracy; random walk segmentation; segmentation methods; Bayesian methods; Biomedical imaging; Computed tomography; Computer science; Dentistry; Image segmentation; Iterative algorithms; Lesions; Light rail systems; Linear discriminant analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
Conference_Location :
Tampa, FL
ISSN :
1051-4651
Print_ISBN :
978-1-4244-2174-9
Electronic_ISBN :
1051-4651
Type :
conf
DOI :
10.1109/ICPR.2008.4761585
Filename :
4761585
Link To Document :
بازگشت