DocumentCode :
2486770
Title :
Component-wise parameter smoothing for learning mixture models
Author :
Reddy, Chandan K. ; Rajaratnam, Bala
Author_Institution :
Dept. of Comput. Sci., Wayne State Univ., Detroit, MI
fYear :
2008
fDate :
8-11 Dec. 2008
Firstpage :
1
Lastpage :
4
Abstract :
In this paper, we propose a novel component-wise smoothing algorithm that constructs a hierarchy (or family) of smoothened log-likelihood surfaces. Our approach first smoothens the likelihood function and then applies the EM algorithm to obtain a promising solution on this smoothened surface. Using the most promising solutions as initial guesses, the EM algorithm is applied again on the original likelihood. This effective optimization procedure eliminates extensive search in the non-promising regions of the parameter space. Empirical results on some standard datasets show the reduction of the number of local maxima and improvements in the log-likelihood values.
Keywords :
expectation-maximisation algorithm; learning (artificial intelligence); pattern recognition; component-wise parameter smoothing algorithm; likelihood function; smoothened log-likelihood surfaces; Computer science; Convolution; Density functional theory; Kernel; Maximum likelihood estimation; Pattern recognition; Probability density function; Smoothing methods; Statistics; Unsupervised learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
Conference_Location :
Tampa, FL
ISSN :
1051-4651
Print_ISBN :
978-1-4244-2174-9
Electronic_ISBN :
1051-4651
Type :
conf
DOI :
10.1109/ICPR.2008.4761684
Filename :
4761684
Link To Document :
بازگشت