DocumentCode :
2487003
Title :
Interactive exploration of large-scale time-varying data using dynamic tracking graphs
Author :
Widanagamaachchi, W. ; Christensen, C. ; Bremer, P.-T. ; Pascucci, V.
Author_Institution :
SCI Inst., Univ. of Utah, Salt Lake City, UT, USA
fYear :
2012
fDate :
14-15 Oct. 2012
Firstpage :
9
Lastpage :
17
Abstract :
Exploring and analyzing the temporal evolution of features in large-scale time-varying datasets is a common problem in many areas of science and engineering. One natural representation of such data is tracking graphs, i.e., constrained graph layouts that use one spatial dimension to indicate time and show the “tracks” of each feature as it evolves, merges or disappears. However, for practical data sets creating the corresponding optimal graph layouts that minimize the number of intersections can take hours to compute with existing techniques. Furthermore, the resulting graphs are often unmanageably large and complex even with an ideal layout. Finally, due to the cost of the layout, changing the feature definition, e.g. by changing an iso-value, or analyzing properly adjusted sub-graphs is infeasible. To address these challenges, this paper presents a new framework that couples hierarchical feature definitions with progressive graph layout algorithms to provide an interactive exploration of dynamically constructed tracking graphs. Our system enables users to change feature definitions on-the-fly and filter features using arbitrary attributes while providing an interactive view of the resulting tracking graphs. Furthermore, the graph display is integrated into a linked view system that provides a traditional 3D view of the current set of features and allows a cross-linked selection to enable a fully flexible spatio-temporal exploration of data. We demonstrate the utility of our approach with several large-scale scientific simulations from combustion science.
Keywords :
computer graphics; graph theory; interactive systems; constrained graph layouts; dynamic tracking graphs; feature definition; interactive exploration; large-scale time-varying data; spatial dimension; spatio temporal exploration; temporal evolution; Correlation; Data visualization; Feature extraction; Layout; Measurement; Vegetation; Visualization; Feature Detection and Tracking; Parallel Coordinates; Time-Varying Data; Topology-based Techniques; Visualization in Physical Sciences and Engineering;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Large Data Analysis and Visualization (LDAV), 2012 IEEE Symposium on
Conference_Location :
Seattle, WA
Print_ISBN :
978-1-4673-4732-7
Type :
conf
DOI :
10.1109/LDAV.2012.6378962
Filename :
6378962
Link To Document :
بازگشت