Title :
Farness preserving Non-negative matrix factorization
Author :
Babaee, Mohammadreza ; Bahmanyar, Reza ; Rigoll, Gerhard ; Datcu, Mihai
Author_Institution :
Inst. for Human-Machine Commun., Tech. Univ. Munchen, Munich, Germany
Abstract :
Dramatic growth in the volume of data made a compact and informative representation of the data highly demanded in computer vision, information retrieval, and pattern recognition. Non-negative Matrix Factorization (NMF) is used widely to provide parts-based representations by factorizing the data matrix into non-negative matrix factors. Since non-negativity constraint is not sufficient to achieve robust results, variants of NMF have been introduced to exploit the geometry of the data space. While these variants considered the local invariance based on the manifold assumption, we propose Farness preserving Non-negative Matrix Factorization (FNMF) to exploits the geometry of the data space by considering non-local invariance which is applicable to any data structure. FNMF adds a new constraint to enforce the far points (i.e., non-neighbors) in original space to stay far in the new space. Experiments on different kinds of data (e.g., Multimedia, Earth Observation) demonstrate that FNMF outperforms the other variants of NMF.
Keywords :
computational geometry; data structures; matrix decomposition; FNMF; compact data representation; computer vision; data matrix; data space geometry exploitation; data structure; farness preserving nonnegative matrix factorization; information retrieval; informative data representation; parts-based representations; pattern recognition; Accuracy; Equations; Geometry; Linear programming; Matrix decomposition; Measurement; Vectors; Clustering; Farness Preserving; Non-negative Matrix Factorization;
Conference_Titel :
Image Processing (ICIP), 2014 IEEE International Conference on
Conference_Location :
Paris
DOI :
10.1109/ICIP.2014.7025611