DocumentCode :
2488386
Title :
The implication of data diversity for a classifier-free ensemble selection in random subspaces
Author :
Ko, A.H.-R. ; Sabourin, R. ; de Oliveira, L.E.S. ; de Souza Britto, A.
Author_Institution :
Ecole de Technol. Super., Univ. of Quebec, Montreal, QC
fYear :
2008
fDate :
8-11 Dec. 2008
Firstpage :
1
Lastpage :
5
Abstract :
Ensemble of Classifiers (EoC) has been shown effective in improving the performance of single classifiers by combining their outputs. By using diverse data subsets to train classifiers, the ensemble creation methods can create diverse classifiers for the EoC. In this work, we propose a scheme to measure the data diversity directly from random subspaces and we explore the possibility of using the data diversity directly to select the best data subsets for the construction of the EoC. The applicability is tested on NIST SD19 handwritten numerals.
Keywords :
data handling; pattern classification; classifier training; classifier-free ensemble selection; data diversity; ensemble creation methods; random subspaces; Bagging; Boosting; Clustering algorithms; Diversity reception; NIST; Pattern recognition; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
Conference_Location :
Tampa, FL
ISSN :
1051-4651
Print_ISBN :
978-1-4244-2174-9
Type :
conf
DOI :
10.1109/ICPR.2008.4761767
Filename :
4761767
Link To Document :
بازگشت