DocumentCode :
2490653
Title :
Bayesian 3D model based human detection in crowded scenes using efficient optimization
Author :
Wang, Lu ; Yung, Nelson H C
Author_Institution :
Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China
fYear :
2011
fDate :
5-7 Jan. 2011
Firstpage :
557
Lastpage :
563
Abstract :
In this paper, we solve the problem of human detection in crowded scenes using a Bayesian 3D model based method. Human candidates are first nominated by a head detector and a foot detector, then optimization is performed to find the best configuration of the candidates and their corresponding shape models. The solution is obtained by decomposing the mutually related candidates into un-occluded ones and occluded ones in each iteration, and then performing model matching for the un-occluded candidates. To this end, in addition to some obvious clues, we also derive a graph that depicts the inter-object relation so that unreasonable decomposition is avoided. The merit of the proposed optimization procedure is that its computational cost is similar to the greedy optimization methods while its performance is comparable to the global optimization approaches. For model matching, it is performed by employing both prior knowledge and image likelihood, where the priors include the distribution of individual shape models and the restriction on the inter-object distance in real world, and image likelihood is provided by foreground extraction and the edge information. After the model matching, a validation and rejection strategy based on minimum description length is applied to confirm the candidates that have reliable matching results. The proposed method is tested on both the publicly available Caviar dataset and a challenging dataset constructed by ourselves. The experimental results demonstrate the effectiveness of our approach.
Keywords :
Bayes methods; edge detection; image matching; iterative methods; object detection; optimisation; solid modelling; Bayesian 3D model; crowded scene; edge information; foot detector; foreground extraction; head detector; human detection; interobject relation; model matching; optimization procedure; shape model; unoccluded candidate; Cameras; Detectors; Head; Humans; Shape; Three dimensional displays; Torso;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Applications of Computer Vision (WACV), 2011 IEEE Workshop on
Conference_Location :
Kona, HI
ISSN :
1550-5790
Print_ISBN :
978-1-4244-9496-5
Type :
conf
DOI :
10.1109/WACV.2011.5711553
Filename :
5711553
Link To Document :
بازگشت