DocumentCode :
2491542
Title :
Bregman distance to L1 regularized logistic regression
Author :
Gupta, Mithun Das ; Huang, Thomas S.
Author_Institution :
Univ. of Illinois at Urbana-Champaign, Champaign, IL
fYear :
2008
fDate :
8-11 Dec. 2008
Firstpage :
1
Lastpage :
4
Abstract :
In this work we investigate the relationship between Bregman distances and regularized logistic regression model. We convert L1-regularized logistic regression (LR) into more general Bregman divergence framework and propose a primal-dual method based algorithm for learning the parameters of the model. The proposed method utilizes L1 regularization to incorporate parameter sparsity into the divergence minimization scheme. We perform tests on public domain data sets and produce results which are amongst the best reported.
Keywords :
regression analysis; Bregman distance; Bregman divergence framework; L1 regularized logistic regression; divergence minimization scheme; Boosting; Iterative algorithms; Joining processes; Logistics; Minimization methods; Performance evaluation; Testing; Training data; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
Conference_Location :
Tampa, FL
ISSN :
1051-4651
Print_ISBN :
978-1-4244-2174-9
Electronic_ISBN :
1051-4651
Type :
conf
DOI :
10.1109/ICPR.2008.4761922
Filename :
4761922
Link To Document :
بازگشت