• DocumentCode
    2492708
  • Title

    Parameter estimation via artificial data generation with the “two-stage” approach

  • Author

    Garatti, Simone ; Bittanti, Sergio

  • Author_Institution
    Dipt. di Elettron. ed Inf., Politec. di Milano, Milan
  • fYear
    2008
  • fDate
    25-27 June 2008
  • Firstpage
    5605
  • Lastpage
    5610
  • Abstract
    In this paper, we consider one of the most classical estimation problem, that of identifying an unknown parameter in a given model from measurements of input/output data. We present a new method named the two-stage approach which provides efficient estimates. The method is based on the preliminary generation of artificial data, and it is fully non-Bayesian. In this way, it is possible to avoid the well known difficulties encountered when resorting to Kalman filtering techniques in parameter estimation.
  • Keywords
    Kalman filters; data handling; parameter estimation; Kalman filtering techniques; artificial data generation; artificial data preliminary generation; parameter estimation; two-stage approach; Automation; Convergence; Equations; Filtering; Intelligent control; Jacobian matrices; Kalman filters; Noise generators; Parameter estimation; State estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on
  • Conference_Location
    Chongqing
  • Print_ISBN
    978-1-4244-2113-8
  • Electronic_ISBN
    978-1-4244-2114-5
  • Type

    conf

  • DOI
    10.1109/WCICA.2008.4593842
  • Filename
    4593842