DocumentCode :
249298
Title :
Image saliency detection via multi-scale statistical non-redundancy modeling
Author :
Scharfenberger, Christian ; Jain, Abhishek ; Wong, Alexander ; Fieguth, Paul
Author_Institution :
Dept. of Syst. Design Eng., Univ. of Waterloo, Waterloo, ON, Canada
fYear :
2014
fDate :
27-30 Oct. 2014
Firstpage :
4294
Lastpage :
4298
Abstract :
A multi-scale statistical non-redundancy modeling approach is introduced for saliency detection in images. The statistical non-redundancy of pixels at different wavelet sub-bands is characterized using a multi-dimensional lattice of non-parametric statistical models, thus taking into account image saliency at multiple scales. This identifies saliency in image attributes at multiple scales, and makes saliency detection strongly robust against noisy input images. Results based on images from a public database show that the proposed approach outperforms existing single and multi-scale approaches, particularly when dealing with noisy images.
Keywords :
image resolution; nonparametric statistics; visual databases; wavelet transforms; image attributes; image saliency detection; multidimensional lattice; multiscale statistical nonredundancy modeling; noisy input images; nonparametric statistical models; public database; wavelet subbands; Computational modeling; Computer vision; Image segmentation; Noise; Noise measurement; Visualization; Wavelet transforms; multi-scale analysis; non-parametric methods; saliency detection; wavelet transforms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2014 IEEE International Conference on
Conference_Location :
Paris
Type :
conf
DOI :
10.1109/ICIP.2014.7025872
Filename :
7025872
Link To Document :
بازگشت