DocumentCode :
2493712
Title :
Dynamic Binary Tree for Hierarchical Clustering of IP Traffic
Author :
Truong, Patrick ; Guillemin, Fabrice
Author_Institution :
France Telecom R&D, Lannion
fYear :
2007
fDate :
26-30 Nov. 2007
Firstpage :
6
Lastpage :
10
Abstract :
This paper proposes a computational and memory-efficient technique for online unidimensional clustering of individual IP addresses in order to detect high-volume traffic clusters (hierarchical heavy hitters). Our technique is based on a Patricia tree and can cope with today´s traffic volume. We test our algorithm by using a traffic trace composed of NetFlow records sent by a few tens of routers of the France telecom IP backbone network. We moreover show how our algorithm can be used for network anomaly detection.
Keywords :
IP networks; Internet; computer network management; pattern clustering; telecommunication security; telecommunication traffic; tree data structures; HHH identification; IP network management; IP traffic hierarchical clustering; Internet; Patricia tree; dynamic binary tree; hierarchical heavy hitters; high-volume traffic cluster detection; individual IP addresses; memory-efficient technique; network anomaly detection; online unidimensional clustering; Binary trees; Clustering algorithms; Data security; Frequency; IP networks; Research and development; Spine; Telecommunication traffic; Testing; Volume measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Global Telecommunications Conference, 2007. GLOBECOM '07. IEEE
Conference_Location :
Washington, DC
Print_ISBN :
978-1-4244-1042-2
Electronic_ISBN :
978-1-4244-1043-9
Type :
conf
DOI :
10.1109/GLOCOM.2007.9
Filename :
4410919
Link To Document :
بازگشت