DocumentCode :
249393
Title :
Image deconvolution using tree-structured Bayesian group sparse modeling
Author :
Ganchi Zhang ; Roberts, Timothy D. ; Kingsbury, Nick
Author_Institution :
Dept. of Eng., Univ. of Cambridge, Cambridge, UK
fYear :
2014
fDate :
27-30 Oct. 2014
Firstpage :
4537
Lastpage :
4541
Abstract :
In this paper, we propose to incorporate wavelet tree structures into a recently developed wavelet modeling method, called VBMM. We show that, using overlapped groups, tree-structured modeling can be integrated into the high-performance non-convex sparsity-inducing VBMM method, and can achieve significant performance gains over the coefficient-sparse version of the algorithm.
Keywords :
deconvolution; discrete wavelet transforms; image processing; inference mechanisms; minimisation; trees (mathematics); variational techniques; image deconvolution; nonconvex sparsity inducing VBMM method; tree structured Bayesian group sparse modeling; tree structured modeling; variational Bayesian inference subband adaptive majorization minimization method; wavelet modeling method; wavelet tree structure; Approximation methods; Bayes methods; Computational modeling; Deconvolution; Hidden Markov models; Signal processing algorithms; Wavelet transforms; Image deconvolution; dual-tree complex wavelets; variational Bayesian; wavelet tree modeling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2014 IEEE International Conference on
Conference_Location :
Paris
Type :
conf
DOI :
10.1109/ICIP.2014.7025920
Filename :
7025920
Link To Document :
بازگشت