DocumentCode :
2495835
Title :
Neural network and statistical perspectives of classification
Author :
Holmström, Lasse ; Koistinen, P. ; Laaksonen, Jorma ; Oja, Erkki
Author_Institution :
Rolf Nevanlinna Inst., Helsinki Univ., Finland
Volume :
4
fYear :
1996
fDate :
25-29 Aug 1996
Firstpage :
286
Abstract :
Pattern classification using neural networks and statistical methods is discussed and a taxonomy based on their underlying mathematical principles is presented. Typical neural network and statistical classifiers are then compared in a case study using handwritten digit data
Keywords :
character recognition; feature extraction; neural nets; pattern classification; probability; statistical analysis; feature extraction; handwritten digit data; neural networks; pattern classification; probability; statistical classifiers; statistical methods; taxonomy; Information science; Kernel; Linear discriminant analysis; Machine intelligence; Network synthesis; Neural networks; Probability density function; Statistical analysis; Statistics; Taxonomy;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 1996., Proceedings of the 13th International Conference on
Conference_Location :
Vienna
ISSN :
1051-4651
Print_ISBN :
0-8186-7282-X
Type :
conf
DOI :
10.1109/ICPR.1996.547432
Filename :
547432
Link To Document :
بازگشت