DocumentCode :
2496615
Title :
A speedy model parameter optimization algorithm of support vector machines
Author :
Chen, Zengzhao ; Liu, Chungui ; Yang, Yang ; He, Xiuling ; Don, Cailin
Author_Institution :
Math. & Stat. Sch., Central China Normal Univ., Wuhan
fYear :
2008
fDate :
25-27 June 2008
Firstpage :
7362
Lastpage :
7367
Abstract :
A speedy parameter optimization algorithm of SVM model is proposed. The algorithm selects a subset from the original training set, and optimizes respectively to ensure the bound of the parameters , then searches the optimum in the smaller range. Experiment shows that optimization of SVM parameters is more speedy and the accuracy is guaranteed in optimizing result.
Keywords :
learning (artificial intelligence); optimisation; search problems; set theory; support vector machines; search problem; speedy parameter optimization algorithm; subset theory; support vector machine model; Automation; Character recognition; Electronic mail; Intelligent control; Mathematical model; Mathematics; Noise measurement; Research and development; Statistics; Support vector machines; Chinese character recognition; model parameter optimization; support vector machine;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on
Conference_Location :
Chongqing
Print_ISBN :
978-1-4244-2113-8
Electronic_ISBN :
978-1-4244-2114-5
Type :
conf
DOI :
10.1109/WCICA.2008.4594064
Filename :
4594064
Link To Document :
بازگشت