Title :
Unobtrusive monitoring of the longitudinal evolution of in-home gait velocity data with applications to elder care
Author :
Austin, Daniel ; Hayes, Tamara L. ; Kaye, Jeffrey ; Mattek, Nora ; Pavel, Misha
Author_Institution :
Dept. of Biomed. Eng., Oregon Health & Sci. Univ., Portland, OR, USA
fDate :
Aug. 30 2011-Sept. 3 2011
Abstract :
Gait velocity has repeatedly been shown to be an important indicator and predictor of both cognitive and physical function, especially in elderly. However, clinical gait assessments are conducted infrequently and cannot distinguish between abrupt changes in function and changes that occur more slowly over time. Collecting gait measurements continuously in-home has recently been proposed and validated to overcome these clinical limitations. In this paper, we describe the longitudinal analysis of in-home gait velocity collected unobtrusively from passive infrared motion sensors. We first describe a model for the probability density function of the in-home gait velocities. We then describe estimation of the evolution of the density function over time and report empirically determined algorithm parameters that have performed well over a wide variety of different gait velocity data. Finally, we demonstrate how this approach allows detection of significant events (abrupt changes in function) and slower changes over time in gait velocity data collected from a sample of two elderly subjects in the Intelligent Systems for Assessing Aging Changes (ISAAC) study.
Keywords :
biomedical measurement; gait analysis; geriatrics; probability; velocity measurement; ISAAC study; Intelligent Systems for Assessing Aging Changes; cognitive function; elder care; in home gait velocity data; longitudinal gait evolution; passive infrared motion sensors; physical function; probability density function; unobtrusive gait monitoring; Aging; Biomedical monitoring; Density functional theory; Estimation; Legged locomotion; Monitoring; Sensors; Accidental Falls; Aged; Aged, 80 and over; Aging; Algorithms; Female; Gait; Geriatrics; Humans; Male; Models, Statistical; Monitoring, Ambulatory; Movement; Nursing Homes; Probability; Time Factors; Walking;
Conference_Titel :
Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE
Conference_Location :
Boston, MA
Print_ISBN :
978-1-4244-4121-1
Electronic_ISBN :
1557-170X
DOI :
10.1109/IEMBS.2011.6091603