DocumentCode :
2500487
Title :
Efficient implementations of a class of ±2b parallel computations on a SIMD hypercube
Author :
Nassimi, David ; Tsai, Yuh-Dong
Author_Institution :
CIS Dept., New Jersey Inst. of Technol., Newark, NJ, USA
fYear :
1991
fDate :
30 Apr-2 May 1991
Firstpage :
2
Lastpage :
9
Abstract :
The authors identify an important class of parallel computations, called ±2b-descend, with an efficient implementation on a hypercube. Given the input A[0:N-1], a computation in this class consists of log N iterations. Iteration b, b=log N-1, . . ., 0, computes the new value of each A[i] as a function of A[i], A[i+2b] and A [i-2b]. They obtain a general algorithm for implementing any computation in this class in O(log N) time on a SIMD hypercube. Their general descend algorithm results in an efficient O(log N) implementation of the Batcher odd-even merge algorithm on a hypercube. The best previously known implementation of odd-even merge on a SIMD hypercube requires O(log2 N) time
Keywords :
computational complexity; parallel algorithms; Batcher odd-even merge algorithm; PM2B-descend; SIMD hypercube; descend algorithm; iterations; parallel computations; Computational Intelligence Society; Concurrent computing; Hypercubes; Parallel algorithms; Routing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel Processing Symposium, 1991. Proceedings., Fifth International
Conference_Location :
Anaheim, CA
Print_ISBN :
0-8186-9167-0
Type :
conf
DOI :
10.1109/IPPS.1991.153749
Filename :
153749
Link To Document :
بازگشت