Title :
Artificial neural network based intracranial pressure mean forecast algorithm for medical decision support
Author :
Zhang, Feng ; Feng, Mengling ; Pan, Sinno Jialin ; Loy, Liang Yu ; Guo, Wenyuan ; Zhang, Zhuo ; Chin, Pei Loon ; Guan, Cuntai ; King, Nicolas Kon Kam ; Ang, Beng Ti
Author_Institution :
Inst. for Infocomm Res. (I2R), Agency for Sci., Technol. & Res. (A*STAR), Singapore, Singapore
fDate :
Aug. 30 2011-Sept. 3 2011
Abstract :
Although the future mean of intracranial pressure (ICP) is of critical concern of many clinicians for timely medical treatment, the problem of forecasting the future ICP mean has not been addressed yet. In this paper, we present a nonlinear autoregressive with exogenous input artificial neural network based mean forecast algorithm (ANNNARX-MFA) to predict the ICP mean of the future windows based on features extracted from past windows and segmented sub-windows. We compare its performance with nonlinear autoregressive artificial neural network algorithm (ANNNAR) without features extracted from window segmentation. Experimental results showed that, ANNNARX-MFA algorithm outperforms ANNNAR algorithm in prediction accuracy, because additional features extracted from finer segmented sub-windows help to catch the subtle changes of ICP trends. This verifies the effectiveness of decomposing the whole window into sub-windows to obtain features in making predictions on future windows. Based on the forecast of ICP mean, medical treatments can be planned in advance to control ICP elevation, in order to maximize recovery and optimize outcome.
Keywords :
decision support systems; feature extraction; forecasting theory; medical diagnostic computing; neural nets; artificial neural network; exogenous input; features extraction; intracranial pressure; mean forecast algorithm; medical decision support; medical treatments; nonlinear autoregressive; window segmentation; Accuracy; Artificial neural networks; Feature extraction; Forecasting; Iterative closest point algorithm; Monitoring; Prediction algorithms; Algorithms; Decision Support Techniques; Fiber Optic Technology; Forecasting; Humans; Intensive Care; Intensive Care Units; Intracranial Hypertension; Intracranial Pressure; Models, Statistical; Neural Networks (Computer); Neurology; Nonlinear Dynamics; Regression Analysis; Reproducibility of Results; Signal Processing, Computer-Assisted;
Conference_Titel :
Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE
Conference_Location :
Boston, MA
Print_ISBN :
978-1-4244-4121-1
Electronic_ISBN :
1557-170X
DOI :
10.1109/IEMBS.2011.6091797