Title :
A new approach for merging gene expression datasets
Author :
Roubaud, Marie-Christine ; Torrésani, Bruno
Author_Institution :
Lab. d´´Analyse, Topologie et Probabilites, Univ. de Provence, Marseille, France
Abstract :
We propose a new approach for merging gene expression data originating from independent microarray experiments. The proposed approach is based upon a model assuming dataset-independent gene expression distribution, and dataset-dependent observation noise and nonlinear observation functions. The estimation algorithm combines smoothing spline estimation for the observation functions with an iterative method for gene expression estimation. The approach is illustrated by numerical results on simulation studies and real data originating from prostate cancer datasets.
Keywords :
cancer; genetics; iterative methods; noise; physiological models; dataset-dependent observation noise; estimation algorithm; gene expression datasets; gene expression estimation; independent microarray experiments; iterative method; nonlinear observation functions; numerical simulation; prostate cancer datasets; spline estimation; Estimation; Gene expression; Noise; Nonlinear distortion; Numerical models; Spline; Empirical Bayes estimation; Gene expression; Microarray data; Smoothing spline regression;
Conference_Titel :
Statistical Signal Processing Workshop (SSP), 2011 IEEE
Conference_Location :
Nice
Print_ISBN :
978-1-4577-0569-4
DOI :
10.1109/SSP.2011.5967638