DocumentCode :
2504492
Title :
Separating background and foregroundin video based on a nonparametric Bayesian model
Author :
Ding, Xinghao ; Carin, Lawrence
Author_Institution :
Electr. & Comput. Eng. Dept., Duke Univ., Durham, NC, USA
fYear :
2011
fDate :
28-30 June 2011
Firstpage :
321
Lastpage :
324
Abstract :
Separating background and foreground in video is a fundamental problem in computer vision. We present a Bayesian hierarchical model to address this challenge, and apply it to video with dynamic scenes. The model uses a nonparametric prior, a beta-bernoulli process, for both the background and foreground representation. Additionally, the model uses neighborhood information of each pixel to encourage group clustering of the foreground. A collapsed Gibbs sampler is used for efficient posterior inference. Experimental results show competitive performance of the proposed model.
Keywords :
Bayes methods; computer vision; image representation; image sampling; inference mechanisms; natural scenes; nonparametric statistics; video signal processing; Bayesian hierarchical model; background representation; background separation; beta-bernoulli process; collapsed Gibbs sampler; computer vision; dynamic scenes; foreground representation; foreground separation; nonparametric Bayesian model; posterior inference; Autoregressive processes; Bayesian methods; Computational modeling; Computer vision; Heuristic algorithms; Pixel; Real time systems; Background subtraction; beta-bernoulli process; dynamic scenes; group sparsity; nonparametric Bayesian hierarchical model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing Workshop (SSP), 2011 IEEE
Conference_Location :
Nice
ISSN :
pending
Print_ISBN :
978-1-4577-0569-4
Type :
conf
DOI :
10.1109/SSP.2011.5967692
Filename :
5967692
Link To Document :
بازگشت