DocumentCode :
2508332
Title :
CDP Mixture Models for Data Clustering
Author :
Ji, Yangfeng ; Lin, Tong ; Zha, Hongbin
Author_Institution :
Key Lab. of Machine Perception (Minist. of Eduction), Peking Univ., Beijing, China
fYear :
2010
fDate :
23-26 Aug. 2010
Firstpage :
637
Lastpage :
640
Abstract :
In Dirichlet process (DP) mixture models, the number of components is implicitly determined by the sampling parameters of Dirichlet process. However, this kind of models usually produces lots of small mixture components when modeling real-world data, especially high-dimensional data. In this paper, we propose a new class of Dirichlet process mixture models with some constrained principles, named constrained Dirichlet process (CDP) mixture models. Based on general DP mixture models, we add a resampling step to obtain latent parameters. In this way, CDP mixture models can suppress noise and generate the compact patterns of the data. Experimental results on data clustering show the remarkable performance of the CDP mixture models.
Keywords :
data handling; pattern clustering; CDP; CDP mixture models; constrained Dirichlet process; data clustering; real-world data modeling; sampling parameters; Bayesian methods; Computational modeling; Computer vision; Data models; Inference algorithms; Motion segmentation; Noise; Clustering; Dirichlet process; Dirichlet process mixture models; Gaussian mixture models;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2010 20th International Conference on
Conference_Location :
Istanbul
ISSN :
1051-4651
Print_ISBN :
978-1-4244-7542-1
Type :
conf
DOI :
10.1109/ICPR.2010.161
Filename :
5597460
Link To Document :
بازگشت