DocumentCode :
25094
Title :
Random Cascaded-Regression Copse for Robust Facial Landmark Detection
Author :
Zhen-Hua Feng ; Huber, Patrik ; Kittler, Josef ; Christmas, William ; Xiao-Jun Wu
Author_Institution :
Sch. of IoT Eng., Jiangnan Univ., Wuxi, China
Volume :
22
Issue :
1
fYear :
2015
fDate :
Jan. 2015
Firstpage :
76
Lastpage :
80
Abstract :
In this letter, we present a random cascaded-regression copse (R-CR-C) for robust facial landmark detection. Its key innovations include a new parallel cascade structure design, and an adaptive scheme for scale-invariant shape update and local feature extraction. Evaluation on two challenging benchmarks shows the superiority of the proposed algorithm to state-of-the-art methods.
Keywords :
face recognition; object detection; regression analysis; adaptive scheme; local feature extraction; parallel cascade structure design; random cascaded-regression copse; robust facial landmark detection; scale-invariant shape update; Accuracy; Educational institutions; Face; Feature extraction; Robustness; Shape; Training; Adaptive shape update; R-CR-C; cascaded regression; facial landmark detection;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2014.2347011
Filename :
6877655
Link To Document :
بازگشت