DocumentCode :
2509850
Title :
Segmentation of radar imagery using Gaussian Markov random field models and wavelet transform techniques
Author :
Dong, Yunhan ; Forster, Bruce ; Milne, Anthony
Author_Institution :
Sch. of Geomatic Eng., New South Wales Univ., Sydney, NSW, Australia
Volume :
4
fYear :
1997
fDate :
3-8 Aug 1997
Firstpage :
2054
Abstract :
This paper presents segmentation of radar imagery by two steps: 1. Initial segmentation using wavelet transform techniques and the watershed method; 2. Segment merging using the Gaussian Markov random field models. The method can be applied to both single-channel and multi-channel images
Keywords :
Markov processes; geophysical signal processing; geophysical techniques; image segmentation; radar imaging; remote sensing by radar; synthetic aperture radar; wavelet transforms; Gaussian Markov random field model; SAR; geophysical measurement technique; image processing; image segmentation; land surface; radar imagery; radar imaging; radar remote sensing; segment merging; synthetic aperture radar; terrain mapping; watershed method; wavelet transform; Gaussian noise; Image edge detection; Image segmentation; Maximum likelihood detection; Merging; Pixel; Position measurement; Radar imaging; Statistics; Wavelet transforms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing, 1997. IGARSS '97. Remote Sensing - A Scientific Vision for Sustainable Development., 1997 IEEE International
Print_ISBN :
0-7803-3836-7
Type :
conf
DOI :
10.1109/IGARSS.1997.609218
Filename :
609218
Link To Document :
بازگشت