Title :
Combining Foreground / Background Feature Points and Anisotropic Mean Shift For Enhanced Visual Object Tracking
Author :
Haner, Sebastian ; Gu, Irene Yu-Hua
Abstract :
This paper proposes a novel visual object tracking scheme, exploiting both local point feature correspondences and global object appearance using the anisotropic mean shift tracker. Using a RANSAC cost function incorporating the mean shift motion estimate, motion smoothness and complexity terms, an optimal feature point set for motion estimation is found even when a high proportion of outliers is presented. The tracker dynamically maintains sets of both foreground and background features, the latter providing information on object occlusions. The mean shift motion estimate is further used to guide the inclusion of new point features in the object model. Our experiments on videos containing long term partial occlusions, object intersections and cluttered or close color distributed background have shown more stable and robust tracking performance in comparison to three existing methods.
Keywords :
feature extraction; image motion analysis; object detection; target tracking; video signal processing; RANSAC cost function; anisotropic mean shift tracker; background feature points; close color distributed background; enhanced visual object tracking; foreground feature points; global object appearance; local point feature correspondences; mean shift motion estimation; motion smoothness; object occlusions; Cost function; Feature extraction; Kernel; Robustness; Target tracking; Videos; RANSAC; SIFT; SURF; Visual object tracking; dynamic maintenance; mean shift; video surveillance;
Conference_Titel :
Pattern Recognition (ICPR), 2010 20th International Conference on
Conference_Location :
Istanbul
Print_ISBN :
978-1-4244-7542-1
DOI :
10.1109/ICPR.2010.1112