DocumentCode :
2510655
Title :
ARE-type iterations for rational Riccati equations arising in stochastic control
Author :
Chu, Eric King-wah ; Li, Tiexiang ; Lin, Wen-Wei
Author_Institution :
Sch. of Math. Sci., Monash Univ., Melbourne, VIC, Australia
fYear :
2011
fDate :
23-25 May 2011
Firstpage :
201
Lastpage :
206
Abstract :
We consider the solution of the rational matrix equations, or generalized algebraic Riccati equations with rational terms, arising in stochastic optimal control in continuous-and discrete-time. The modified Newton´s methods, the DARE-and CARE-type iterations for continuous- and discrete-time rational Riccati equations respectively, will be considered. In particular, the convergence of these new modified Newton´s method will be proved.
Keywords :
Newton method; Riccati equations; continuous time systems; convergence; discrete time systems; optimal control; stochastic systems; CARE-type iteration; DARE-type iteration; Newton method; continuous-time system; convergence; discrete-time system; generalized algebraic Riccati equation; rational Riccati equation; rational matrix equation; rational term; stochastic optimal control; Convergence; Differential equations; Optimal control; Riccati equations; algebraic Riccati equation; doubling algorithm; rational Riccati equation; stochastic control system;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control and Decision Conference (CCDC), 2011 Chinese
Conference_Location :
Mianyang
Print_ISBN :
978-1-4244-8737-0
Type :
conf
DOI :
10.1109/CCDC.2011.5968172
Filename :
5968172
Link To Document :
بازگشت