DocumentCode :
251233
Title :
Condition-invariant, top-down visual place recognition
Author :
Milford, Michael ; Scheirer, Walter ; Vig, Eleonora ; Glover, Arren ; Baumann, Oliver ; Mattingley, Jason ; Cox, D.
Author_Institution :
Sch. of Electr. Eng. & Comput. Sci., Queensland Univ. of Technol., Brisbane, QLD, Australia
fYear :
2014
fDate :
May 31 2014-June 7 2014
Firstpage :
5571
Lastpage :
5577
Abstract :
In this paper we present a novel, condition-invariant place recognition algorithm inspired by recent discoveries in human visual neuroscience. The algorithm combines intolerant but fast low resolution whole image matching with highly tolerant, sub-image patch matching processes. The approach does not require prior training and works on single images, alleviating the need for either a velocity signal or image sequence, differentiating it from current state of the art methods. We conduct an exhaustive set of experiments evaluating the relationship between place recognition performance and computational resources using part of the challenging Alderley sunny day - rainy night dataset, which has only been previously solved by integrating over 320 frame long image sequences. We achieve recall rates of up to 51% at 100% precision, matching places that have undergone drastic perceptual change while rejecting match hypotheses between highly aliased images of different places. Human trials demonstrate the performance is approaching human capability. The results provide a new benchmark for single image, condition-invariant place recognition.
Keywords :
image matching; image resolution; image sequences; object recognition; computational resources; fast low resolution whole image matching; human visual neuroscience; image sequence; novel condition-invariant place recognition algorithm; place recognition performance; sub-image patch matching process; Cameras; Educational institutions; Histograms; Image recognition; Image resolution; Streaming media; Visualization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation (ICRA), 2014 IEEE International Conference on
Conference_Location :
Hong Kong
Type :
conf
DOI :
10.1109/ICRA.2014.6907678
Filename :
6907678
Link To Document :
بازگشت