DocumentCode :
25144
Title :
Optimizing Template for Lookup-Table Inverse Halftoning using Elitist Genetic Algorithm
Author :
Zhi-Qiang Wen ; Yong-Le Lu ; Zhi-Gao Zeng ; Wen-Qiu Zhu ; Jun-Hua Ai
Author_Institution :
Sch. of Comput. & Commun., Hunan Univ. of Technol., Zhuzhou, China
Volume :
22
Issue :
1
fYear :
2015
fDate :
Jan. 2015
Firstpage :
71
Lastpage :
75
Abstract :
A template optimization method based on elitist genetic algorithm was proposed for lookup-table inverse halftoning. A mathematical model with constraint conditions was built to describe the template optimization problem. We solved this optimization problem by using elitist genetic algorithm and designed the details about encoding and decoding scheme, selection and reproduce, crossover, mutation, elitist strategy and fitness function according to the proposed optimization model. In experiments, we demonstrated the performance on Floyd-Steinberg error diffusion, Jarvis-Judice error diffusion, cluster dither, Bayer disperse dither and dot diffusion halftone images. According to our experiment study, our method approaches to the optimal result closer than the greedy algorithm and simulated annealing do. We suggested L = 10 on cluster dither images but L = 5 on other four kinds of halftone images.
Keywords :
decoding; genetic algorithms; image coding; image restoration; mathematical analysis; pattern clustering; table lookup; Bayer disperse dither; Floyd-Steinberg error diffusion; Jarvis-Judice error diffusion; cluster dither; decoding scheme; dot diffusion halftone imaging; elitist genetic algorithm; encoding scheme; image restoration; lookup-table inverse halftoning; mathematical model; simulated annealing; template optimization method; Genetic algorithms; Image reconstruction; Optimization; PSNR; Sociology; Statistics; Table lookup; Elitist genetic algorithm; inverse halftoning; lookup table; template optimization;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2014.2346929
Filename :
6877659
Link To Document :
بازگشت