Title :
Detecting Paper Fibre Cross Sections in Microtomy Images
Author :
Kontschieder, Peter ; Donoser, Michael ; Bischof, Horst ; Kritzinger, Johannes ; Bauer, Wolfgang
Abstract :
The goal of this work is the fully-automated detection of cellulose fibre cross sections in microtomy images. A lack of significant appearance information makes edges the only reliable cue for detection. We present a novel and highly discriminative edge fragment descriptor that represents angular relations between fragment points. We train a Random Forest with a plurality of these descriptors including their respective center votes. In such a way, the Random Forest exploits the knowledge about the object centroid for detection using a generalized Hough voting scheme. In the experiments we found that our method is able to robustly detect fibre cross sections in microtomy images and can therefore serve as initialization for successive fibre segmentation or tracking algorithms.
Keywords :
Hough transforms; edge detection; image segmentation; Hough voting scheme; cellulose fibre cross sections; edge detection; fibre segmentation; microtomy images; paper fibre cross section detection; random forest; Computer vision; Image edge detection; Image segmentation; Imaging; Shape; Three dimensional displays; Training;
Conference_Titel :
Pattern Recognition (ICPR), 2010 20th International Conference on
Conference_Location :
Istanbul
Print_ISBN :
978-1-4244-7542-1
DOI :
10.1109/ICPR.2010.86