DocumentCode :
2515918
Title :
Weight-control strategy for programmable CNN chips
Author :
Espejo, S. ; Domínguez-Castro, R. ; Rodríguez-Vázquez, A. ; Carmona, R.
Author_Institution :
Centre Nacional de Microelectron., Seville Univ., Spain
fYear :
1994
fDate :
18-21 Dec 1994
Firstpage :
405
Lastpage :
410
Abstract :
This paper describes a hybrid weight-control strategy for the VLSI realization of programmable cellular neural nets (CNNs), based on automatic adaptation of analog control signals to levels specified by digital words. This approach merges the advantages of digital and analog programmability, achieving low areas and reduced number of control lines, simplifying the control and storage of the weight values and eliminating their dependency on global process-parameter variations
Keywords :
cellular neural nets; analog control signals; automatic adaptation; global process-parameter variations; programmable CNN chips; programmable cellular neural nets; weight-control strategy; Automatic control; Cellular neural networks; Computer applications; Design optimization; Signal processing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cellular Neural Networks and their Applications, 1994. CNNA-94., Proceedings of the Third IEEE International Workshop on
Conference_Location :
Rome
Print_ISBN :
0-7803-2070-0
Type :
conf
DOI :
10.1109/CNNA.1994.381641
Filename :
381641
Link To Document :
بازگشت