DocumentCode :
2515989
Title :
Investigating the potential of application-centric aggressive power management for HPC workloads
Author :
Rodero, I. ; Chandra, S. ; Parashar, M. ; Muralidhar, R. ; Seshadri, H. ; Poole, S.
Author_Institution :
Center for Autonomic Comput., Rutgers Univ., Piscataway, NJ, USA
fYear :
2010
fDate :
19-22 Dec. 2010
Firstpage :
1
Lastpage :
10
Abstract :
Energy efficiency of large-scale data centers is becoming a major concern not only for reasons of energy conservation, failures, and cost reduction, but also because such sys tems are soon reaching the limits of power available to them. Like High Performance Computing (HPC) systems, large-scale clu ster-based data centers can consume power in megawatts, and of all the power consumed by such a system, only a fraction is used for actual computations. In this paper, we study the potential of application-centric aggressive power management of data center´s resources for HPC workloads. Specifically, we consider power management mechanisms and controls (currently or soon to be) available at different levels and for different subsystems, and leverage several innovative approaches that have been taken to tackle this problem in the last few years, can be effectively used in a application-aware manner for HPC workloads. To do this, we first profile sta ndard HPC benchmarks with respect to behaviors, resource usage and power impact on individual computing nodes. Based on a power and latency model and the workload profiles, we develop an algorithm that can improve energy efficiency with little or no performance loss. We then evaluate our proposed algorithm through simulations using empirical power characterization and quantification. Finally, we validate the simulation results with actual executions on real hardware. The obtained results show that by using application aware power management, we can re-du ce the average energy consumption without significant penalty in performance. This motivates us to investigate autonomic approaches for application-aware aggressive power management and cross layer and cross function predictive subsystem level power management for large-scale data centers.
Keywords :
computer centres; large-scale systems; power aware computing; HPC workloads; application centric aggressive power management; energy consumption; high performance computing system; large-scale cluster based data centers; latency model; power model; Benchmark testing; Delay; Energy consumption; Memory management; Power demand; Random access memory; Servers;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
High Performance Computing (HiPC), 2010 International Conference on
Conference_Location :
Dona Paula
Print_ISBN :
978-1-4244-8518-5
Electronic_ISBN :
978-1-4244-8519-2
Type :
conf
DOI :
10.1109/HIPC.2010.5713196
Filename :
5713196
Link To Document :
بازگشت