DocumentCode :
2516435
Title :
Fusing Audio-Visual Nonverbal Cues to Detect Dominant People in Group Conversations
Author :
Aran, Oya ; Gatica-Perez, Daniel
Author_Institution :
Idiap Res. Inst., Martigny, Switzerland
fYear :
2010
fDate :
23-26 Aug. 2010
Firstpage :
3687
Lastpage :
3690
Abstract :
This paper addresses the multimodal nature of social dominance and presents multimodal fusion techniques to combine audio and visual nonverbal cues for dominance estimation in small group conversations. We combine the two modalities both at the feature extraction level and at the classifier level via score and rank level fusion. The classification is done by a simple rule-based estimator. We perform experiments on a new 10-hour dataset derived from the popular AMI meeting corpus. We objectively evaluate the performance of each modality and each cue alone and in combination. Our results show that the combination of audio and visual cues is necessary to achieve the best performance.
Keywords :
audio-visual systems; feature extraction; knowledge based systems; pattern classification; social sciences computing; classifier level; dominant people detection; feature extraction; fusing audio-visual nonverbal cues; group conversations; multimodal fusion; rule-based estimator; social dominance; Accuracy; Cameras; Data mining; Estimation; Feature extraction; Psychology; Visualization; dominance estimation; multimodal fusion; social computing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2010 20th International Conference on
Conference_Location :
Istanbul
ISSN :
1051-4651
Print_ISBN :
978-1-4244-7542-1
Type :
conf
DOI :
10.1109/ICPR.2010.898
Filename :
5597887
Link To Document :
بازگشت