DocumentCode :
2518502
Title :
Kullback-Leibler distance in linear parametric modeling
Author :
Beheshti, Soosan
Author_Institution :
Dept. of Electr. & Comput. Eng., Ryerson Univ., Toronto, ON
fYear :
2008
fDate :
6-11 July 2008
Firstpage :
1671
Lastpage :
1675
Abstract :
This paper addresses the estimation of the Kulback-Leibler (KL) distance in data-driven modeling of parametric probability distributions. Given a finite observation of a parametric probability density function (pdf), the goal is to provide the best representative of the true parameter, which is known to belong to a given parametric model set. The first step in this problem setting is to estimate the true parameter in available nested model sets of different orders. The proposed method calculates the KL distance between these estimates and the unknown true parameter. By using only the observed data, we provide probabilistic worst case bounds on these KL distances. The best candidate among the available estimates is the solution of a resulting probabilistic min-max problem. A comparison of this approach with existing methods that estimate the KL distance is provided.
Keywords :
minimax techniques; statistical distributions; Kullback-Leibler distance estimation; data-driven modeling; linear parametric modeling; parametric probability distribution; probabilistic minmax problem; probabilistic worst case bound; probability density function; Additive noise; Gaussian noise; Maximum likelihood estimation; Parameter estimation; Parametric statistics; Probability density function; Probability distribution; Random processes; Samarium; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2008. ISIT 2008. IEEE International Symposium on
Conference_Location :
Toronto, ON
Print_ISBN :
978-1-4244-2256-2
Electronic_ISBN :
978-1-4244-2257-9
Type :
conf
DOI :
10.1109/ISIT.2008.4595272
Filename :
4595272
Link To Document :
بازگشت