DocumentCode :
2518803
Title :
Hyperbent functions, Kloosterman sums and Dickson polynomials
Author :
Charpin, Pascale ; Gong, Guang
Author_Institution :
INRIA, Le Chesnay
fYear :
2008
fDate :
6-11 July 2008
Firstpage :
1758
Lastpage :
1762
Abstract :
This paper is devoted to the classification of hyperbent functions, i.e., bent functions which are bent up to a primitive root change. We first exhibit an infinite class of monomial functions which are not hyperbent. It implies notably that Kloosterman sums at point 1 on F2m cannot be zero, unless m = 4. Further, we show that hyperbent functions with multiple trace terms can be described by means of Dickson polynomials.
Keywords :
Boolean functions; polynomials; Boolean function; Dickson polynomials; Kloosterman sums; hyperbent functions; monomial functions; primitive root change; Boolean functions; Hamming weight; Helium; Polynomials; Boolean function; Dickson polynomial; Kloosterman sum; bent function; hyperbent function; permutation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2008. ISIT 2008. IEEE International Symposium on
Conference_Location :
Toronto, ON
Print_ISBN :
978-1-4244-2256-2
Electronic_ISBN :
978-1-4244-2257-9
Type :
conf
DOI :
10.1109/ISIT.2008.4595290
Filename :
4595290
Link To Document :
بازگشت