DocumentCode :
2519159
Title :
MAXIMUM A POSTERIORI RECONSTRUCTION OF PATLAK PARAMETRIC IMAGE FROM SINOGRAMS IN DYNAMIC PET
Author :
Wang, Guobao ; Qi, Jinyi
Author_Institution :
Dept. of Biomed. Eng., California Univ., Davis, CA
fYear :
2007
fDate :
12-15 April 2007
Firstpage :
161
Lastpage :
164
Abstract :
Parametric imaging using Patlak graphical method has been widely used to analyze dynamic PET data. The conventional way to generate Patlak parametric image is to reconstruct dynamic images first and then perform Patlak graphical analysis on the time activity curves pixel-by-pixel. In this paper we present a Bayesian method for reconstructing Patlak parametric images directly from raw sinogram data by combining the Patlak plot model with image reconstruction. A preconditioned conjugate gradient algorithm is used to find the maximum a posteriori solution. We conduct computer simulations to validate the proposed method. The comparison with conventional indirect approaches shows that the proposed method results in more accurate estimate of the parametric image
Keywords :
Bayes methods; image reconstruction; medical image processing; positron emission tomography; Bayesian method; Patlak graphical method; Patlak parametric image; Patlak plot model; conjugate gradient algorithm; dynamic image reconstruction; dynamic positron emission tomography; maximum a posteriori reconstruction; parametric imaging; sinograms; Bayesian methods; Data analysis; Image analysis; Image generation; Image reconstruction; Kinetic theory; Parameter estimation; Pixel; Positron emission tomography; Statistical analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biomedical Imaging: From Nano to Macro, 2007. ISBI 2007. 4th IEEE International Symposium on
Conference_Location :
Arlington, VA
Print_ISBN :
1-4244-0672-2
Electronic_ISBN :
1-4244-0672-2
Type :
conf
DOI :
10.1109/ISBI.2007.356813
Filename :
4193247
Link To Document :
بازگشت