DocumentCode :
2519844
Title :
Maximum likelihood approach for blind audio source separation using time-frequency Gaussian source models
Author :
Févotte, Cédric ; Cardoso, Jean-François
Author_Institution :
Dept. of Eng., Cambridge Univ., UK
fYear :
2005
fDate :
16-19 Oct. 2005
Firstpage :
78
Lastpage :
81
Abstract :
In this paper we propose a simple time-frequency Gaussian model of audio signals that allows for separation of possibly underdetermined and noisy linear instantaneous mixtures. An efficient EM algorithm is proposed to estimate the mixing matrix, the noise covariance and covariances of the source t-f coefficients over a chosen frame/subband tiling of the time-frequency domain. Results are given on 4 × 4 and 3 × 4 noisy mixtures of audio sources.
Keywords :
Gaussian noise; audio signal processing; blind source separation; maximum likelihood estimation; time-frequency analysis; EM algorithm; audio signals; blind audio source separation; maximum likelihood approach; noise covariance; noisy mixtures; time-frequency Gaussian source models; Blind source separation; Covariance matrix; Gaussian noise; Higher order statistics; Maximum likelihood estimation; Noise level; Signal processing; Signal processing algorithms; Source separation; Time frequency analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Applications of Signal Processing to Audio and Acoustics, 2005. IEEE Workshop on
Print_ISBN :
0-7803-9154-3
Type :
conf
DOI :
10.1109/ASPAA.2005.1540173
Filename :
1540173
Link To Document :
بازگشت