DocumentCode :
2522063
Title :
LINEAR AND KERNEL FISHER DISCRIMINANT ANALYSIS FOR STUDYING DIFFUSION TENSOR IMAGES IN SCHIZOPHRENIA
Author :
Vos, F.M. ; Caan, M.W.A. ; Vermeer, K.A. ; Majoie, C.B.L.M. ; Heeten, G. J den ; van Vliet, Lucas J.
Author_Institution :
Dept. of Radiol., Acad. Med. Center, Amsterdam
fYear :
2007
fDate :
12-15 April 2007
Firstpage :
764
Lastpage :
767
Abstract :
A new method is explored to study schizophrenia using diffusion tensor imaging (DTI). Both linear discriminant analysis (LDA) and kernel fisher discriminant analysis (KFDA) are combined with principal components analysis (PCA). Thus, a linear and non-linear combination of voxels is sought that separates patients from controls. PCA/KFDA does not show an improvement over PCA/LDA in classification. Because the PCA/LDA-mapping can be visualized, which enables localisation of differences, this method is preferred for analysis.
Keywords :
brain; diseases; image classification; medical image processing; principal component analysis; diffusion tensor images; kernel fisher discriminant analysis; linear discriminant analysis; principal components analysis; schizophrenia; Anisotropic magnetoresistance; Biomedical imaging; Covariance matrix; Diffusion tensor imaging; Image analysis; Kernel; Linear discriminant analysis; Principal component analysis; Tensile stress; Visualization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biomedical Imaging: From Nano to Macro, 2007. ISBI 2007. 4th IEEE International Symposium on
Conference_Location :
Arlington, VA
Print_ISBN :
1-4244-0672-2
Electronic_ISBN :
1-4244-0672-2
Type :
conf
DOI :
10.1109/ISBI.2007.356964
Filename :
4193398
Link To Document :
بازگشت