Title :
LINEAR AND KERNEL FISHER DISCRIMINANT ANALYSIS FOR STUDYING DIFFUSION TENSOR IMAGES IN SCHIZOPHRENIA
Author :
Vos, F.M. ; Caan, M.W.A. ; Vermeer, K.A. ; Majoie, C.B.L.M. ; Heeten, G. J den ; van Vliet, Lucas J.
Author_Institution :
Dept. of Radiol., Acad. Med. Center, Amsterdam
Abstract :
A new method is explored to study schizophrenia using diffusion tensor imaging (DTI). Both linear discriminant analysis (LDA) and kernel fisher discriminant analysis (KFDA) are combined with principal components analysis (PCA). Thus, a linear and non-linear combination of voxels is sought that separates patients from controls. PCA/KFDA does not show an improvement over PCA/LDA in classification. Because the PCA/LDA-mapping can be visualized, which enables localisation of differences, this method is preferred for analysis.
Keywords :
brain; diseases; image classification; medical image processing; principal component analysis; diffusion tensor images; kernel fisher discriminant analysis; linear discriminant analysis; principal components analysis; schizophrenia; Anisotropic magnetoresistance; Biomedical imaging; Covariance matrix; Diffusion tensor imaging; Image analysis; Kernel; Linear discriminant analysis; Principal component analysis; Tensile stress; Visualization;
Conference_Titel :
Biomedical Imaging: From Nano to Macro, 2007. ISBI 2007. 4th IEEE International Symposium on
Conference_Location :
Arlington, VA
Print_ISBN :
1-4244-0672-2
Electronic_ISBN :
1-4244-0672-2
DOI :
10.1109/ISBI.2007.356964