Title :
Joint noise distribution parameter estimation and LDPC decoding using variational Bayes
Author :
Taheri, Y. Mohammad ; Ahmad, M. Omair ; Swamy, M.N.S.
Author_Institution :
Dept. of Electr. & Comput. Eng., Concordia Univ., Montreal, QC, Canada
Abstract :
In this work, we investigate the problem of estimating time-varying noise distribution parameter on a factor graph. A new message passing scheme is proposed by incorporating the variational Bayes (VB) into the belief propagation algorithm for estimating of time-varying noise distribution parameter in a low-density parity-check decoder. The scheme can also be used for the estimation of the correlation noise model parameter in distributed video coding. A Bayesian estimator is used to estimate this parameter by obtaining its posterior distribution given the channel output. The VB algorithm is employed to approximate the complex form of the posterior distribution with a simple distribution. Finally, this distribution is used to derive a closed-form expression for the messages on the augmented factor graph for online parameter estimation and decoding process at the same time.
Keywords :
Bayes methods; approximation theory; correlation methods; graph theory; message passing; parameter estimation; parity check codes; statistical distributions; variational techniques; video coding; Bayesian estimator; LDPC decoding; VB algorithm; augmented factor graph; belief propagation algorithm; correlation noise model parameter estimation; distributed video coding; joint noise distribution parameter estimation; low-density parity-check decoder; message passing scheme; posterior distribution; time-varying noise distribution parameter estimation; variational Bayes algorithm; Estimation; Magnetic resonance imaging; Parity check codes;
Conference_Titel :
Circuits and Systems (MWSCAS), 2014 IEEE 57th International Midwest Symposium on
Conference_Location :
College Station, TX
Print_ISBN :
978-1-4799-4134-6
DOI :
10.1109/MWSCAS.2014.6908538