• DocumentCode
    25262
  • Title

    An Upper Bound on the Complexity of Multiplication of Polynomials Modulo a Power of an Irreducible Polynomial

  • Author

    Kaminski, M. ; Chaoping Xing

  • Author_Institution
    Dept. of Comput. Sci., Technion - Israel Inst. of Technol., Haifa, Israel
  • Volume
    59
  • Issue
    10
  • fYear
    2013
  • fDate
    Oct. 2013
  • Firstpage
    6845
  • Lastpage
    6850
  • Abstract
    Let μq2(n,k) denote the minimum number of multiplications required to compute the coefficients of the product of two degree n k - 1 polynomials modulo the kth power of an irreducible polynomial of degree n over the q2 element field BBF q2. It is shown that for all odd q and all n = 1,2,..., liminfk → ∞[( μq2(n,k))/ k n] ≤ 2 (1 + [ 1/( q - 2)] ). For the proof of this upper bound, we show that for an odd prime power q, all algebraic function fields in the Garcia-Stichtenoth tower over BBF q2 have places of all degrees and apply a Chudnovsky like algorithm for multiplication of polynomials modulo a power of an irreducible polynomial.
  • Keywords
    computational complexity; polynomials; Chudnovsky like algorithm; Garcia-Stichtenoth tower; algebraic function fields; irreducible polynomial; polynomial multiplication; polynomials modulo; Complexity theory; Indexes; Poles and towers; Poles and zeros; Polynomials; Terrorism; Upper bound; Algebraic function fields; bilinear algorithms; finite fields; polynomial multiplication; the Garcia–Stichtenoth tower;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2013.2272072
  • Filename
    6553290