DocumentCode :
2526931
Title :
Nonlinear feature extraction with radial basis functions using a weighted multidimensional scaling stress measure
Author :
Webb, Andrew R.
Author_Institution :
Defence Res. Agency, Malvern, UK
Volume :
4
fYear :
1996
fDate :
25-29 Aug 1996
Firstpage :
635
Abstract :
We investigate radial basis functions for nonlinear feature extraction. The parameters of the transformation are determined by minimising a loss term (similar to stress in multidimensional scaling) that weights components of the loss by a nonlinear function of the dissimilarities. Several forms for the nonlinear function are considered and an optimisation scheme based on iterative majorisation is used to determine the parameter values. The technique is illustrated on two data sets
Keywords :
feature extraction; feedforward neural nets; iterative methods; minimisation; dissimilarities; iterative majorisation; loss term minimisation; nonlinear feature extraction; radial basis functions; weighted multidimensional scaling stress measure; Electronic mail; Feature extraction; Iterative algorithms; Iterative methods; Multidimensional systems; Nonlinear equations; Stress; Topology;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 1996., Proceedings of the 13th International Conference on
Conference_Location :
Vienna
ISSN :
1051-4651
Print_ISBN :
0-8186-7282-X
Type :
conf
DOI :
10.1109/ICPR.1996.547642
Filename :
547642
Link To Document :
بازگشت