DocumentCode :
2527561
Title :
Sequential diagonal linear discriminant analysis (SeqDLDA) for microarray classification and gene identification
Author :
Pique-Regi, Roger ; Ortega, Antonio ; Asgharzadeh, Shahab
Author_Institution :
Univ. of Southern California, Los Angeles, CA, USA
fYear :
2005
fDate :
8-11 Aug. 2005
Firstpage :
112
Lastpage :
113
Abstract :
In microarray classification we are faced with a very large number of features and very few training samples. This is a challenge for classical Linear Discriminant Analysis (LDA), since reliable estimates of the covariance matrix cannot be obtained. Alternative techniques based on Diagonal LDA (DLDA) combined with an independent gene selection (filtering) have been proposed. In this paper we propose a novel sequential DLDA (SeqDLDA) technique that combines gene selection and classification. At each iteration, one gene is sequentially added and the linear discriminant (LD) recomputed using the DLDA model (i.e., a diagonal co-variance matrix). Classical DLDA will add the gene with highest t-test score without checking the resulting model. In contrast, SeqDLDA will find the one gene that better improves class separation after recomputing the model measured using a robustified t-test score. We evaluate the new method in several 2-class datasets (Neuroblastoma, Prostate, Leukemia, Colon) using 10-fold cross-validation. For example, for the Neuroblastoma data set, the average misclassification rate of DLDA (16.91%) is significantly reduced to 13.87% using SeqDLDA.
Keywords :
biology computing; genetics; iterative methods; pattern classification; covariance matrix; gene identification; gene selection; microarray classification; neuroblastoma data set; recomputing; sequential diagonal linear discriminant analysis; t-test score; Colon; Covariance matrix; Filtering; Filters; Frequency selective surfaces; Gaussian distribution; Hospitals; Linear discriminant analysis; Maximum likelihood estimation; Robustness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Systems Bioinformatics Conference, 2005. Workshops and Poster Abstracts. IEEE
Print_ISBN :
0-7695-2442-7
Type :
conf
DOI :
10.1109/CSBW.2005.124
Filename :
1540563
Link To Document :
بازگشت