DocumentCode :
25299
Title :
Hierarchical Bases Preconditioners for the Electric Field Integral Equation on Multiply Connected Geometries
Author :
Adrian, Simon B. ; Andriulli, Francesco P. ; Eibert, Thomas F.
Author_Institution :
HFT, Tech. Univ. Munchen, Munich, Germany
Volume :
62
Issue :
11
fYear :
2014
fDate :
Nov. 2014
Firstpage :
5856
Lastpage :
5861
Abstract :
This communication presents a formulation that allows to use hierarchical basis preconditioners applicable to the electric field integral equation (EFIE) on multiply connected geometries without searching for global loops. Currently available hierarchical basis preconditioners need an explicit representation of global loops. Finding these requires a computational complexity exceeding the linearithmic complexity of fast matrix-vector multiplication methods. Instead of using an explicit representation of global loops, we utilize Helmholtz projectors to regularize the EFIE separately on the solenoidal, non-solenoidal, and harmonic Helmholtz subspaces. Thereby, we avoid the explicit recovery of the global loops and maintain the leading complexity of fast multiplication methods. Numerical results prove the effectiveness of the proposed approach.
Keywords :
computational complexity; electric field integral equations; electric fields; EFIE; Helmholtz projectors; computational complexity; electric field integral equation; hierarchical bases preconditioners; linearithmic complexity; matrix-vector multiplication methods; Complexity theory; Current density; Geometry; Harmonic analysis; Null space; Standards; Vectors; Electric field integral equation (EFIE); hierarchical bases; integral equations; numerical methods; preconditioning;
fLanguage :
English
Journal_Title :
Antennas and Propagation, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-926X
Type :
jour
DOI :
10.1109/TAP.2014.2347392
Filename :
6877670
Link To Document :
بازگشت