DocumentCode :
2529991
Title :
Exponential complexity lower bounds for depth 3 arithmetic circuits in algebras of functions over finite fields
Author :
Grigoriev, D. ; Razborov, Alexander A.
Author_Institution :
Dept. of Math. & Comput. Sci., Pennsylvania State Univ., University Park, PA, USA
fYear :
1998
fDate :
8-11 Nov 1998
Firstpage :
269
Lastpage :
278
Abstract :
A depth 3 arithmetic circuit can be viewed as a sum of products of linear functions. We prove an exponential complexity lower bound on depth 3 arithmetic circuits computing some natural symmetric functions over a finite field F. Also, we study the complexity of the functions f: Dn→F for subsets D⊂F. In particular, we prove an exponential lower bound on the complexity of a depth 3 arithmetic circuit which computes the determinant or the permanent of a matrix considered as functions f:(F*)n2→F
Keywords :
computational complexity; polynomials; algebras of functions; depth 3 arithmetic circuits; exponential complexity lower bounds; finite fields; linear functions; symmetric functions; Algebra; Circuits; Complexity theory; Computer science; Digital arithmetic; Galois fields; Linear approximation; Mathematics; Polynomials;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Foundations of Computer Science, 1998. Proceedings. 39th Annual Symposium on
Conference_Location :
Palo Alto, CA
ISSN :
0272-5428
Print_ISBN :
0-8186-9172-7
Type :
conf
DOI :
10.1109/SFCS.1998.743456
Filename :
743456
Link To Document :
بازگشت