Title :
GenMiner: Mining Informative Association Rules from Genomic Data
Author :
Martinez, Ricardo ; Pasquier, Claude ; Pasquier, Nicolas
Abstract :
GENMINER is a smart adaptation of closed itemsets based association rules extraction to genomic data. It takes advantage of the novel NORDI discretization method and of the CLOSE [27] algorithm to efficiently generate min- imal non-redundant association rules. GENMINER facili- tates the integration of numerous sources of biological in- formation such as gene expressions and annotations, and can tacitly integrate qualitative information on biological conditions (age, sex, etc.). We validated this approach ana- lyzing the microarray datasets used by Eisen et al. [10] with several sources of biological annotations. Extracted asso- ciations revealed significant co-annotated and co-expressed gene patterns, showing important biological relationships between genes and their features. Several of these relation- ships are supported by recent biological literature.
Keywords :
Association rules; Bioinformatics; Biological processes; Cells (biology); Data analysis; Data mining; Databases; Gene expression; Genomics; Laboratories;
Conference_Titel :
Bioinformatics and Biomedicine, 2007. BIBM 2007. IEEE International Conference on
Conference_Location :
Fremont, CA
Print_ISBN :
978-0-7695-3031-4
DOI :
10.1109/BIBM.2007.49