DocumentCode :
2531534
Title :
Symmetrical Multi-petal Chaotic Attractors in a 3D Autonomous System with Only One Stable Equilibrium
Author :
Wang, Xiong ; Chen, Guanrong
Author_Institution :
Dept. of Electron. Eng., City Univ. of Hong Kong, Hong Kong, China
fYear :
2011
fDate :
19-22 Oct. 2011
Firstpage :
82
Lastpage :
85
Abstract :
This article shows how a simple system with only one stable equilibrium can generate very complex dynamic behaviors such as symmetrical multi-petal chaotic attractors. This new finding reveals some mysterious features of chaos, indicating that chaos may be a global phenomenon of nonlinear dynamical system, in the sense that a chaotic attractor may not be confined to a system equilibrium locally.
Keywords :
chaos; nonlinear dynamical systems; 3D autonomous system; chaos feature; nonlinear dynamical system; stable equilibrium; symmetrical multipetal chaotic attractor; Bifurcation; Chaos; Color; Eigenvalues and eigenfunctions; Jacobian matrices; Nonlinear dynamical systems; Three dimensional displays; Multi-petal chaotic attractor; stable equilibrium;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Chaos-Fractals Theories and Applications (IWCFTA), 2011 Fourth International Workshop on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-4577-1798-7
Type :
conf
DOI :
10.1109/IWCFTA.2011.11
Filename :
6093497
Link To Document :
بازگشت