DocumentCode :
2532896
Title :
A Parallel Refined Jacobi-Davidson Method for Quadratic Eigenvalue Problems
Author :
Wang, Shunxu
Author_Institution :
Coll. of Sci., Huaihai Inst. of Technol., Lianyungang, China
fYear :
2010
fDate :
18-20 Dec. 2010
Firstpage :
111
Lastpage :
115
Abstract :
This paper presents a parallel refined Jacobi-Davidson method for computing extreme eigenpairs of quadratic eigenvalue problems. The method directly computes the refined Ritz pairs in the projection subspace, and expands the subspace by the solution of the correction equation. Combining with the restarting scheme, the method can solve several eigenpairs of quadratic eigenvalue problems. The numerical experiments on a parallel computer show that the parallel refined Jacobi-Davidson method for computing quadratic eigenvalue problems is very effective.
Keywords :
eigenvalues and eigenfunctions; mathematics computing; parallel processing; Ritz pairs; extreme eigenpairs; parallel computer; parallel refined Jacobi Davidson method; quadratic eigenvalue problems; Approximation methods; Eigenvalues and eigenfunctions; Equations; Integrated circuits; Jacobian matrices; Matrix decomposition; Parallel processing; Jacobi-Davidson method; Parallel algorithm; Quadratic eigenvalue problems; Refined method;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel Architectures, Algorithms and Programming (PAAP), 2010 Third International Symposium on
Conference_Location :
Dalian
Print_ISBN :
978-1-4244-9482-8
Type :
conf
DOI :
10.1109/PAAP.2010.62
Filename :
5715071
Link To Document :
بازگشت