DocumentCode :
2535236
Title :
Algebraic geometry code decoding based on Chinese remainder theorem
Author :
Maidee, Pongstom ; Choomchuay, Somsak
Author_Institution :
Dept. of Electron., King Mongkut´´s Inst. of Technol., Bangkok, Thailand
fYear :
1998
fDate :
24-27 Nov 1998
Firstpage :
475
Lastpage :
478
Abstract :
In contrast to the conventional decoding of an algebraic geometry code that involves syndrome computing, finding error location and error magnitude computing, this paper proposes the new technique for a decoding system that makes use of the Chinese remainder theorem reconstruction. The modified version of the extended Euclid algorithm is then applied to solve the resulting key equation. The information polynomial can then be obtained directly without the knowledge of error location a priori. Our decoder can correct errors up to [(d-1)/2], where d denotes the minimum distance of the full length code
Keywords :
algebraic geometric codes; decoding; error correction codes; Chinese remainder theorem; algebraic geometry code; decoding; error correction; extended Euclid algorithm; information polynomial; minimum distance; Computational geometry; Computer errors; Decoding; Equations; Error correction codes; Galois fields; H infinity control; Polynomials;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 1998. IEEE APCCAS 1998. The 1998 IEEE Asia-Pacific Conference on
Conference_Location :
Chiangmai
Print_ISBN :
0-7803-5146-0
Type :
conf
DOI :
10.1109/APCCAS.1998.743827
Filename :
743827
Link To Document :
بازگشت