DocumentCode :
253589
Title :
Multiscale Combinatorial Grouping
Author :
Arbelaez, Pablo ; Pont-Tuset, Jordi ; Barron, Jonathan ; Marques, F. ; Malik, Jagannath
Author_Institution :
Univ. of California, Berkeley, Berkeley, CA, USA
fYear :
2014
fDate :
23-28 June 2014
Firstpage :
328
Lastpage :
335
Abstract :
We propose a unified approach for bottom-up hierarchical image segmentation and object candidate generation for recognition, called Multiscale Combinatorial Grouping (MCG). For this purpose, we first develop a fast normalized cuts algorithm. We then propose a high-performance hierarchical segmenter that makes effective use of multiscale information. Finally, we propose a grouping strategy that combines our multiscale regions into highly-accurate object candidates by exploring efficiently their combinatorial space. We conduct extensive experiments on both the BSDS500 and on the PASCAL 2012 segmentation datasets, showing that MCG produces state-of-the-art contours, hierarchical regions and object candidates.
Keywords :
combinatorial mathematics; group theory; image recognition; image segmentation; BSDS500; MCG; PASCAL 2012 segmentation datasets; bottom-up hierarchical image segmentation; combinatorial space; fast normalized cuts algorithm; grouping strategy; hierarchical regions; hierarchical segmenter; multiscale combinatorial grouping; multiscale information; multiscale regions; object candidate generation; state-of-the-art contours; Accuracy; Detectors; Image color analysis; Image resolution; Image segmentation; Measurement; Tin; Image Segmentation; Object Candidates;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on
Conference_Location :
Columbus, OH
Type :
conf
DOI :
10.1109/CVPR.2014.49
Filename :
6909443
Link To Document :
بازگشت