Title :
A Weightless Neural Node Based on a Probabilistic Quantum Memory
Author :
Silva, Alonso ; de Oliveira, Wilson ; Ludermir, Teresa
Author_Institution :
Centro de Inf., Univ. Fed. de Pernambuco, Recife, Brazil
Abstract :
The success of quantum computation is most commonly associated with speed up of classical algorithms, as the Shor´s factoring algorithm and the Grover´s search algorithm. But it should also be related with exponential storage capacity such as the super dense coding. In this work we use a probabilistic quantum memory proposed by Trugen berger, where one can store 2n patterns with only n quantum bits (qbits). We define a new model of a quantum weightless neural node with this memory in a similar fashion as to the classical Random Access Memory (RAM) node is used in classical weightless neural networks. Some advantages of the proposed model are that the memory of the node does not grow exponentially with the number of inputs and that the node can generalise.
Keywords :
neural nets; probability; quantum computing; random-access storage; search problems; Grover search algorithm; classical algorithm; classical random access memory; classical weightless neural network; probabilistic quantum memory; quantum computation; quantum weightless neural node; random access memory node; shor factoring algorithm; Artificial neural networks; Equations; Pattern recognition; Probabilistic logic; Quantum computing; Random access memory; Registers; Neural Computing; Probabilistic Quantum Memories; Quantum Computing; RAM Based Neural Networks; Weightless Neural Networks;
Conference_Titel :
Neural Networks (SBRN), 2010 Eleventh Brazilian Symposium on
Conference_Location :
Sao Paulo
Print_ISBN :
978-1-4244-8391-4
Electronic_ISBN :
1522-4899
DOI :
10.1109/SBRN.2010.52