DocumentCode :
2536317
Title :
Connectivity in Semi-algebraic Sets
Author :
Hong, Hoon
Author_Institution :
Dept. of Math., North Carolina State Univ., Raleigh, NC, USA
fYear :
2010
fDate :
23-26 Sept. 2010
Firstpage :
4
Lastpage :
7
Abstract :
We consider the problem of deciding whether two given points in a semialgebraic set can be connected, that is, whether the two points lie in a same connected component. In particular, we consider a semialgebraic set consisting of points where a given polynomial is non-zero. We will describe a method based on gradient fields, eigenvectors and interval analysis.
Keywords :
eigenvalues and eigenfunctions; gradient methods; polynomials; set theory; connectivity; eigenvector; gradient field method; interval analysis; polynomial; semialgebraic set; Algorithm design and analysis; Complexity theory; Eigenvalues and eigenfunctions; Planning; Polynomials; Presses; Robot motion; Keywords-connectivity; gradient; road map; semi-algebraic sets;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2010 12th International Symposium on
Conference_Location :
Timisoara
Print_ISBN :
978-1-4244-9816-1
Type :
conf
DOI :
10.1109/SYNASC.2010.91
Filename :
5715261
Link To Document :
بازگشت