DocumentCode :
2538236
Title :
Projective Point Matching Using Modified Particle Swarm Optimization
Author :
Liu Hongpo ; Chen Jianrong ; Tan Zhiguo ; Teng Shuhua
Author_Institution :
Sch. of Software & Technol., Henan Polytech. Inst., Nanyang, China
fYear :
2010
fDate :
13-15 Dec. 2010
Firstpage :
31
Lastpage :
34
Abstract :
A projective point matching algorithm based on modified particle swarm optimization is presented. In the paper, the point matching problem turns into an optimization with two series of parameters, projective transform parameters and correspondent mapping parameters. Firstly, a modified particle swarm optimization (PSO) is introduced and a new rule searching for correspondences, closer point matching rule, is also proposed. We use PSO find the optimal solution. It updates the best geometric transform parameters constantly till find the global best, and in each iteration the closer point matching rule is applied to get the correspondent mapping parameters under the temporary fixed transform parameters. Experiments on both synthetic points and real images demonstrate the algorithm is reliable and validate.
Keywords :
image registration; particle swarm optimisation; geometric transform; modified particle swarm optimization; point matching rule; projective point matching algorithm; projective transform parameter; rule searching; temporary fixed transform parameter; Cognition; Computer vision; Noise; Optimization; Particle swarm optimization; Search problems; Transforms; Closer Point Matching; Image Registration; PSO; Point Matching; Projective Transformation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Genetic and Evolutionary Computing (ICGEC), 2010 Fourth International Conference on
Conference_Location :
Shenzhen
Print_ISBN :
978-1-4244-8891-9
Electronic_ISBN :
978-0-7695-4281-2
Type :
conf
DOI :
10.1109/ICGEC.2010.16
Filename :
5715363
Link To Document :
بازگشت