DocumentCode :
2540400
Title :
SISCHMAX: Discovering common contour patterns
Author :
Liu, Xiaobing ; Zhang, Bo
Author_Institution :
Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China
fYear :
2010
fDate :
7-9 July 2010
Firstpage :
209
Lastpage :
216
Abstract :
Discovering common shape contour is a promising topic. However, local position and scale variance always leads to the mismatch of similar contours. In this study, we propose Shift Invariant Sparse Coding HMAX (SISCHMAX)to address this problem. Shift Invariant Sparse Coding is used to learn the configuration of line responses on the output of HMAX C1 layer. And we test the proposed method on Caltech101 dataset for discovering object contour. Due to the tolerance of local shift of the lines, sparse coding extracts better object contours using HMAX C1 outputs instead of gray value.
Keywords :
object recognition; shape recognition; CaltechlOl dataset; SISCHMAX; common contour pattern discovering; common shape contour discovering; contours mismatch; gray value; line response configuration; local position variance; local shift tolerance; object contour; scale variance; shift invariant sparse coding HMAX CI layer; Brain modeling; Computational modeling; Encoding; Humans; Image coding; Pixel; Visualization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cognitive Informatics (ICCI), 2010 9th IEEE International Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4244-8041-8
Type :
conf
DOI :
10.1109/COGINF.2010.5599740
Filename :
5599740
Link To Document :
بازگشت