DocumentCode :
2540861
Title :
Discrete-time decentralized neural backstepping controller for a five DOF robot manipulator
Author :
Garcia-Hernandez, R. ; Sanchez, E.N. ; Saad, M. ; Bayro-Corrochano, E.
Author_Institution :
Fac. de Ing., Univ. Autonoma del Carmen, Campeche, Mexico
fYear :
2009
fDate :
24-26 June 2009
Firstpage :
552
Lastpage :
557
Abstract :
This paper deals with adaptive trajectory tracking for a five DOF robot manipulator, A high order neural network (HONN) is used to approximate a decentralized control law designed by the backstepping technique as applied to a block strict feedback form (BSFF). The HONN learning is performed online by an Extended Kalman Filter (EKF) algorithm. The applicability of the proposed scheme is illustrated via simulations.
Keywords :
Kalman filters; feedback; manipulators; neurocontrollers; block strict feedback form; discrete-time decentralized neural backstepping controller; extended Kalman filter algorithm; high order neural network; robot manipulator; trajectory tracking; Adaptive control; Automatic control; Backstepping; Distributed control; Manipulator dynamics; Mobile robots; Neural networks; Programmable control; Robotics and automation; Trajectory; Backstepping; Extended Kalman Filter; High-order neural network; Robot Manipulator; Trajectory Tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control and Automation, 2009. MED '09. 17th Mediterranean Conference on
Conference_Location :
Thessaloniki
Print_ISBN :
978-1-4244-4684-1
Electronic_ISBN :
978-1-4244-4685-8
Type :
conf
DOI :
10.1109/MED.2009.5164600
Filename :
5164600
Link To Document :
بازگشت